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Multiconductor Transmission Lines in
Multilayered Dielectric Media
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Abstract —A method for computing the capacitance matrix and induc-

tance matrix for a mukicondnctor transmission line in a multilayered

dielectric region is presented. The nundkr of conductors and the number of

dielectric layers are arbitrary. Some of the conductors may be of finite

cross section and others may be infinitesimally thin. The conductors are
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either above a single ground plane or between two paraflel ground planes.

The formulation is obtained by rising a free-space Green’s function in

conjunction with totnl charge on the conductor-to-dielectric interfaces and

polarization charge on the dielectric-to-dielectric interfaces. The sohrtion is

effected by the method of moments using pulses for expansion and point

matching for testing. Computed results are given for some cases where afi

conducting lines are of finite cross section and other cases where they are

infinitesimally thin.

I. INTRODUCTION

T HE OBJECTIVE of this analysis is to determine the

capacitance matrix and the inductance matrix of a

multiconductor transmission-line system. Some of the con-

0018-9480/84/0400-0439$01.00 @1984 IIEEE
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ductors may be of finite cross section. Others may be

infinitesimally thin. All of them are embedded in a multi-

layered dielectric material that is either above a single

ground plane or contained between two ground planes.

Each dielectric-to-dielectric interface is parallel to the

ground plane(s).

Multiconductor transmission lines in multilayered media

have been investigated by means of Green’s function tech-

niques [1]–[1 1], conformal mapping [12], [13], a variational

method [14], a Fourier transform method [15], a Fourier

integral method [16], and a generalized spectral domain

analysis [17], [18]. In [3] and [11], the problem of multicon-

ductor transmission lines in two dielectric layers is ap-

proached by using a Green’s function obtained from image

theory. For a two-layered dielectric, this Green’s function

consists of four expressions, each containing an infinite

series of images. The extension of this type of Green’s

function to three dielectric layers consists of nine expres-

sions, each containing a doubly infinite series of images [8].

The extension of this type of Green’s function to more

than three dielectric layers is impractical because, for N

dielectric layers, it would consist of N2 expressions, each

containing N – 1 infinite series.

Taking an alternative approach, the present paper uses a

free-space Green’s function in conjunction with total charge

on the conductor-to-dielectric interfaces and polarization

charge on the dielectric-to-dielectric interfaces. This ap-

proach is similar to the one in [10]. The free-space Green’s

function approach results in a simpler formulation of the

problem, but requires the solution of a larger matrix equa-

tion. This formulation has the advantage that there is no

theoretical limit to the number of dielectric layers that can

be treated, but a practical limit is imposed by the speed

and storage of the computer. For computational reasons,

the transverse width of the dielectric layers is taken to be

finite instead of infinite. If the upper ground plane is

present, its width is also taken to be finite.

H. STATEMENT OF THE PROBLEM

Consider a system of multiconductor transmission lines

in a multilayered dielectric region above a ground plane as

shown in either Fig. 1 or Fig. 2. The system is uniform in

the direction perpendicular to the xy plane. An arbitrary

number NC of perfect conductors are embedded in an

arbitrary number N~ of dielectric layers. Some of the
conductors may be of finite cross section. Others may be

infinitesimally thin strips that appear as curves in the xy

plane. The permittivity of the jth dielectric layer is c!. In

Fig. 1, the uppermost dielectric extends toy= m. In Fig. 2,

there is an upper ground plane.

A lower ground plane is present in both Figs. 1 and 2.

This lower ground plane extends from x = – cc to x = cc.

Nominally, the upper ground plane and the dielectric

layers also extend from x = – m to x = cc. However. the

numerical solution of Section IV is obtained by truncating

the upper ground plane and the dielectric layers at a finite

negative value of x and a finite positive value of x.

The objective is to determine the capacitance matrix and

the inductance matrix of the multiconductor transmission-

Y
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Fig. 1. A rnulticonductor transmission hue m a multdayered dielectric
region above a ground plane.
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Fig 2. A multiconductor transmission lme in a multilayered dielectric
region between two ground planes,

line system. The ijth element of the capacitance matrix is

the free charge per unit length of surface on the i th

conductor when the potential of the jth conductor is one

volt and the other conductors are grounded. In [3], the

elements of the capacitance matrix are called coefficients

of capacitance. In [19, p. 97], the diagonal elements of the

capacitance matrix are called coefficients of capacitance,

but the off-diagonal elements are called coefficients of

induction. The inductance matrix is the product of (p ~fO)

with the inverse of the capacitance matrix that would exist

if the multilayered dielectric material were replaced by free

space [20, eq. (2.24)]. Here, PO is the permeability y of free

space, and 60 is the permittivity of free space.

Once the capacitance and inductance matrices of the
mttlticonductor transmission-line system are known, the

complete behavior of the system can be determined, to the

transmission-line approximation, by multiconductor trans-

mission-line theory [20].

III. ANALYSIS

Consider the capacitance matrix for the problem stated

in the previous section. The ijth element of this matrix is

the free charge per unit length of surface on the ith

conductor when all conductors except the j th conductor

are grounded and the j th conductor is charged to a poten-

tial of one volt. Hence, the elements of the capacitance

matrix can be determined by relating the free charge per

unit length of surface on the conductors to the potentials
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of the conductors. The free charge per unit length of

surface on one of the NC conductors is the integral of the

free charge per unit area over the intersection of the

surface of the conductor with the xy plane. Thus, the

elements of the capacitance matrix can easily be de-

termined once a relationship has been established between

the free charge per unit area on the surfaces of the conduc-

tors and the potentials of the conductors.

A total charge UT per unit area is assumed on the

conductor-to-dielectric interfaces and the NJ – 1 dielectric-

to-dielectric interfaces. The conductor-to-dielectric inter-

faces consist of the surfaces of the NC conductors and the

upper ground plane, if present. The jth dielectric-to-dielec-

tric interface is the plane of constant y where the dielectric

layers (1 and CJ+ ~ meet, provided that no conductors lie on

this plane. If conductors lie on this plane, then the jth

dielectric-to-dielectric interface is the portion of this plane

not occupied by conductors. On each conductor-to-dielec-

tric interface, total charge is the sum of free charge and

polarization charge. On each dielectric-to-dielectric inter-

face, total charge is polarization charge. In Section IV, the

total charge on the upper, ground plane, if present, and the

dielectric-to-dielectric interfaces is truncated at a finite

negative value of x and a finite positive value of x.

At any point p in the xy plane and above the lower

ground plane, th; potential @is due to the combination of

UT and the image of UT about the lower ground plane.

Hence

where 1~is the contour of the jth interface in the xy plane.

The first NC interfaces are the surfaces of the NC conduc-

tors. If there is no upper ground plane, the next N~ – 1

interfaces are the dielectric-to-dielectric interfaces. If there

is an upper ground plane, the (NC + l)th interface is the

surface of this ground plane, and the next Nd – 1 interfaces

are the dielectric-to-dielectric interfaces. Accordingly

J=.J1+J2 (2)

where, in the absence of the upper ground plane

.lI = NC

Jz=Nd–l (3)

and, in the presence of the upper ground plane

JI=NC+l

J2=N~–1. (4)

It is evident that JI is the number of conductor-to-dielectric

interfaces and that J2 is the number of dielectric-to-dielec-

tric interfaces. In (l), dl’ is the differential element of

length at p’ on 1,, and ~ is the image of p’ about the lower— —
ground p~ane.

The electric field ~ is given by

E(P) =–Y@(f). (5)—

Substituting (1) for @in (5), and assuming that p is not on

any of the interfaces {1, } so that the y opera~or may be

taken under the integral sign, we obtain

(6)

Taking the limit of (6) as p approaches the interface 1,, we

obtain the following form;la for ~ valid on 1,:

Here, ~ is the unit vector normal to 1, at p. The side of

1, toward which ~ points is called the posfiive side of /,.

The side of f, away from which n points is called the neg-

ative side of 1,. In (7), &+ (p) is the electric field on the

positive side of 1,, and ~- (~) is the electric field on the

negative side of 1,. In (7), { ~,~enotes the principal value of

the integral over 1,.

On each conductor-to-dielectric interface, the potential is

constant. Denoting the potential on the i th conductor-to-

dielectric interface by ~, we obtain

If the

i = J1.

1

2rr60

(p on 1,
+(.P)=K3 ;=l z J .

,9””1

upper ground plane is present, then ~

Substitution of (1) for O(P) in (8) yields—

(8)

is zero for

(9)

The displacement vector is called D(p). The -y compo-

nent of B( p ) is continuous across each ~ielectric-to-dielec-

tric interf~ce. Since Q(p) is t~e product of permittivity

with electric field, it foll~ws that

c,_ J,&+ (p)”g, ==6,+l-J,E-(p)”uJ. >—

(

p on 1,—
(lo)

i= J1+l, J1+2, ”.. J

where UYis the unit vector in they direction, In Figs. 1 and

2, they direction is upward. In (10), c, -J, and E+(p) are,

respectively, the permittivity and electric field on the upper

yields, after division

side of 1,. ‘More&er, (,+ ~_Jl and ~-(~) are, respectively,

the permittivity and electric field on the lower side of 1,.

Substitution of (7) for ~ ‘(p) in (10)

by (~,-~, ‘f I+ I–J, )-

(6,_ J,+6,+,-,, ) ~T(p)

2CO(6, -J, “[+ I-J, )-
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Equations (9) and (11) are a set of J integral equations in

the unknown total charge UT per unit area on the interfaces

whose contours are {1,, j =1,2, . . . J }. In Section IV, the

method of moments will be used to obtain an approximate

numerical solution for UT in terms of {~, i =1$2, . . . NC}.

Since (9) and (11) are linear, this solution is of the form

~,= : +’)p’
1

(12)
1=1

where u$’ ) is the solution which would result if the potential

~ was unity and all other potentials were zero.

As stated earlier, some of the conductors may be of

finite cross section, and others may be infinitesimally thin

strips. If the i th conductor is of finite cross section, then 1,
is a closed curve. On this i th conductor

uT=@.g (13)

OF= C&. n— (14)

where ~ is the electric field just outside the conductor, ~ is

the unit normal vector which points outward from the

surface of the conductor, c is the permittivity just outside

the conductor, and u~ is the free charge per unit area on

the conductor. Equations (13) and (14) imply that

(15)

on the surface of the zth conductor provided that this

conductor is of finite cross section.

If the i th conductor is an infinitesimally thin strip, then

1, runs from one edge of the strip to the other. The free

charge or per unit area on the surface of the i th conductor

is then given by

uF=(6+~+–f–~–). ~ (16)

where n is a unit vector normal to the strip. The side of the

strip toward which E points is called the positive side. The

side of the strip away from which n points is called the

negative side. In (16), c+ and ~+ are, respectively,

the permittivity and electric field on the positive side of the

strip. Moreover, ~- and ~– are, respectively, the permittiv-

ity and electric field on the negative side of the strip.
Substitution of (7) for E * in (16) leads to

OF(p)= c+(f’)+~-(p)
2E0

UT(y)—

per unit length on it is given by

Q,= ~U@dl, i=l,2, . ..NC (18)
,

where dl is the differential element of length at p on 1,. In

view of (12) with the index i replaced by j, subs~itution of

(15) or (17) for OF in (18) gives

Q,= f c’lj~, i=l,2, . ..N. < (19)
1=1

where, if the i th conductor is of finite cross section

(20)

If the ith conductor is an infinitesimally thin strip, then

(21)

In obtaining (21), the index j in (17) was replaced by k in

order to avoid confusion with the index j which appears in

C,,. The coefficient C,J is the ijth element of the capaci-

tance matrix.

The inductance matrix is called L. The ijth element of L
is the magnetic flux passing between a unit length of the

i th conductor and the lower ground plane when one ampere

of net z-directed electric current flows on thej th conductor

and there is no net z-directed electric current on any of the

other conductors. Here, z is the coordinate perpendicular

to the xy plane. It is shown in the Appendix that

L=po60[co]-1 (22)

where Co is the capacitance matrix which would result if all

dielectric layers were replaced by free space.

‘ IV. DEVELOPMENT OF THE MOMENT SOLUTION

In this section, the integral equations (9) and (11) are

+ f+(p) –~- (p) solved numerically for UT by means of the method of

2mo
moments [21].

A solution o~ to (9) and (11) is sought in the form

N

UT(P)= z %#’rl(p) (23)
n=l

.gdl’ (17) where {1’.(g), n =1,2, “ ~“ N } are unit pulse functions
which cover { 1,, j = 1,2, . . . J}. Moreover, { u~,,, n =

on the surface of the i th conductor, provided that this 1,2, . . . N } are constants to be determined. The upper

conductor is an infinitesimally thin strip. ground plane and dielectric layers are now truncated at a

Regardless of whether the i th conductor has finite cross finite negative value of x and a finite positive value of x so

section or is an infinitesimally thin strip, the free charge Q, that only pulse functions of finite domain are needed,
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Given an arbitrary point on the truncated { lj, j = 1,2,...

.l }, there is an integer m such that, at this point

P*= I

Pn = o, rr=l,2, . . . nz-l, m+l, . ..N. (24)

It follows from (23) and (24) that

o~ = uTm (25)

at this point.

Let {P.(P), n =1,2, .- .Nl} be the pulses on {1~, j=
1,2,.. . Jl}, and let {P.(&), n= Nl+l, Nl+2,0”. N} be
the pulses on {lj, j= JI +1, JI +2, - - ., J}. Moreover, let

~~ be the midpoint of the domain of Pm(l) for m =
1,2,.-N.

Substituting (23) for UT in (9) and then enforcing (9) at

~‘& for m ‘1,2, ” -” Nl, we obtain

; Sn,no,n= y, m=l,2, . ..Nl (26)
~=1

where i is such that ~~ is on 1,, and

(27)

where Al. is the domain of P.(p).
Substituting (23) for UT in (lo and then enforcing (11) at

p=p~for m= Nl+l, Nl +2,... N, we obtain— —

i smn~,n= o, m= Nl+l, Nl +2,.. . N (28)
~=1

where, for m # n

{

m= Nl+l, Nl +2;.

n=l,2, . ..N
““N. (29)

In (28), S.,M is given by

m= N1+l, N1+2, . ..N. (30)

In (30), i is such that p., is on Al,. If m # n, but if &W,and P.
are on the same dielectric-to-dielectric interface, then (29)
reduces to

Formulas for calculating SB,~ are given later in this

section. After S~~ has been calculated for m =1,2, . . . N

L-
0

-x

Fig. 3. The straight line segment A 1,1with length A,,, midpoint (x,,, y,,),
and orientation 0,,,

and n=l,2, . . . N, (26) and (28) combine to form N

simultaneous equations in the N unknowns { u~~, n =
1,2,.. . N}. These simultaneous equations can then be

solved for {UT., n =1,2, “ “ .N}interms of{~, i=l,2, . . .

NC}. The solution is of the form

,=1
(32)

where {u$’~, n = 1,2, . “ . N } is the solution which would ,

result if ~ were unity and all other V‘s were zero. Sub-

stituting (32) into (23) and comparing the result with (12),

we obtain

u:)(p)= f @’n(&). (33)—
~=1

The elements of the capacitance matrix can be calculated

by replacing i by j in (33) and then substituting the

resulting expression for uf)(~) in (20) and (21). The

integral with respect to 1 in (21) is approximated by

sampling the integrand at p = ~m for all values of m for

which pm is on 1,. At p = p~~ the integrals with respect to 1‘

in (21)–are similiir to ~he ~ntegrals appearing in expressions

(29) and (30) for S~fl.

To facilitate calculation of S.,., Al. is approximated by

the straight line segment shown in Fig. 3. This segment is

of length A,, and makes an angle 9. with the x axis. The

midpoint of this segment is ~,~. Now

P = Uxxn + L$JYn–n (34)

where gX is the unit vector in the x direction, and x. and y.

are, respectively, the x and y coordinates of ~,,. Similarly,

the vectors p’ and ~ in expression (27) for S~,~ are written

in terms of ~heir r~ctangular coordinates as

p’= MIX’+ Eyy ’ (35)—

p’=~xx’-~yy’. (36)

As can be seen from Fig. 3

x’= X,l + tcose,, (37)

y’=yn+fsin$fl. (38)
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Due to the equations of the previous paragraph, (27)

becomes

Sfl,. = A /(1’2)An in

[

(Xm -X’) ’+(ym + y’)’

,)
4% -(1/z)A,, (x- - ~Z)2+(y~ - ~)’ ‘t’

{

rn=l,2, . ..N1
(39)

n=l,2, ---N

where x‘ and y‘ are given by (37) and (38), respectively.

After substitution of (37) and (38) for x’ and y’, (39)

reduces to

{

m=l,2, . ..Nl
Sn,n=~l(al, bl)–&(a2jb2)j

n=l,2, ..-N

1

J
‘1’2)A”-~ ln(t’ + a’) dt.Fl(a, b) ‘~ -(1/2) A,, -~

Application of [22, formula 623.] to (45) gives

1
ww=~

[
tln(t2+a2)–2t

( )1

Z=l/2An–b

+2atan-1 ~
1=–1/2A,, –b”

If a is zero, then the tan-1 term should be omitted

(46).
Expressions (29) and (30) become

{

nz=N1+l, N1 +2,

n=l,2, . ..N

m= N1+l, N1 +2,

N

N.

(40)

(41)

(42)

(43)

(44)

(45)

(46)

from

(47)

(48)

The first integral in (30) has vanished because Al,,l is a

straight line segment. In (48), i is such that ~fl, is on 1,. In

(47) and (48)

and

(50)

In the domain of integration of (49), p’ is never equal to ~~,,

and in (50), ~ is never equal to ~~, .–Hence, the integrands

in (49) and (SO) are always finite.

Equations (34)-(36) reduce (49) and (50) to

!
Im,l = 1’2A”

Y.* – .?-”

-’/’Al (Xm - X’)’+(ym _ ~,)’d’ (51)

Jiti,n= 1’2A)’ Y., +Y’

-’/’All (Xn, - X’)’+(ym+Y,)’d’”(52)
Substitution of (37) and (38) for x’ and y’ in (51) and (52)

produces

l,},n=(ym –yn–~2sin6n)~2( a2, ~2)–(sin~n )~3(a21~2)

(53)

lnln=(ym +yn+hlsin@n )~2(a1, ~l)+(slnon )~3(al}~l)

(54)

Moreover

(55)

(56)

If a = O, then, as is evident from the statement just after

(50), t is never zero during the integration in (55). Hence, it

is easy to obtain

[1
1 1/2 A,, - b

F2(a, b)=– – ~=o
1 –l/2A,z–b ’

(57)

which reduces to

A.
F2(a, b)= a=O. (58)

~2_ ~A2 ‘

4“

If a # O, application of [22, formula 120.1.] to (55) gives

( 11

l/2 A,, –b

F2(a, b)= [~tan-l ~
–1/2A,>–h

a + O. (59)

It is evident from the statement just after (50) that (t’+ a2)

is never zero during the integration in (56). Hence, we

easily obtain

b (60)

which is valid regardless of the value of a.

V. NUMERICAL EXAMPLES

A computer program has been written for the special

case where all conductors are of finite cross section and for

the case where all conductors are infinitesimally thin [23].

This program was used to obtain the results given in this

section. These results agree well with those of various

references.
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Fig. 4. Coupled microstrips

TABLE I
COMPARISON OF RESULTS FOR THE COUPLED MICROSTRIP IN

FIG, 4. UNITS ARE F/m

I Ouz Result, Reference [11] Ref eren.e [ 31

c11 0.,165 x 10-’0 0.9017 x 10-10

Clz -0.8220 x 10-1’ -0.8059 X 10-11

C21 ~ -0.8220 x 10-11 i -0.8059 x 10-11

c:
22 ! 0.9165 x10-’” ~ 0.9017 x 10-10

0.9224 H 10-10

-0.8504 x 10-”

-0.8506 x 10-”

0.9224 X 10-10

Example 1

Consider the pair of coupled microstrips touching a
dielectric slab over a conducting plane as shown in Fig. 4.

The left-hand conductor is conductor 1. The right-hand

conductor is conductor 2. Table I compares our computed

results with those of [3] and [11]. For comparison, the

results of [3] have been changed to farads per meter. For

our results, we used 16 subsections on each conductor, and

on the dielectric interface we used 10 subsections from – 9

to – 4, 4 subsections from – 1 to +1, and 10 subsections

from 4 to 9. The difference between our results and those

of [3] is less than 4 percent. The difference between our

results and those of [11] is less than 2 percent. The dif-

ference should become smaller as we increase the number

of our subsections.

Example 2

Consider two conductors in two different dielectric layers

above a ground plane as shown in Fig. 5. The left-hand

conductor is conductor 1. The right-hand conductor is

conductor 2. The number of subsections used on conductor

1 is 6, the number on conductor 2 is 6, and the number on

the dielectric interface is 16 extending from x = – 0.8 to

x = +0.8. In Table H, our results are compared with those

obtained by using the computer program of [11]. The

agreement is excellent in all cases. In the table, C,, is the

~th element of the capacitance matrix, Co,j is the J th

element of the free-space capacitance matrix, and L,, is the

ij th element of the inductance, matrix.

Example 3

Here, the two conductors of the transmission line are

located in the same dielectric layer, as shown in Fig. 6. The

left-hand conductor is conductor 1. The right-hand con-

ductor is conductor 2. The number of subsections used on

conductor 1 is 6, the number on conductor 2 is 6, and the

number used on the dielectric interface is 16 extending

I,//.////s.
Fig. 5. Two conductors in two different dielectric layers.

TABLE II
COMPARISON OF RESULTS FOR EXAMPLE 2, FIG. 5. CAPACITANCE IS

IN F/m. INDUCTANCE IS IN H/m

q

Our Results ~ Reference [111

c11
0.3651 Y 10-10 I 0.3701 < 10-10

c12
-0.1562 x 10-’0 ~ -0.1520 x 10-10

C21
-0.15,2.10-’0 -0.1523 x 10-10

0.2099 * 10-9 0.2108 . 10
-9

C22

7

Coil
0.2296 c 10-10 0.2296 - 10-10

C012
-0.8808 .10-” -0.8805 x 10-”

4

C021
-0.8808 Y 10-1’ -0.8810 Y 10-”

C022
0.3772 x 10-10 0.3772 Y 10-10

-6 -6
k 1

0.5315 x 10 0.5&03 x 10
-6 -6

k 2
0.1241 . 10 0.1229 X 10

0.1241 Y. lG-6 0.1265 X 10
-6

’21

’22
0.3235 Y 10-6 0.3204 X 10-b

I
Y

1.1 -
I .0 -m

1

//////////,//7///7/ /+’//$//// / ////

Fig, 6. Two conductors in the same dielectric layer.

TABLE III
COMPARISON OF RESULTS FOR EXAMPLE 3, FIG. 6. CAPACITANCE IS

IN F/m. INDUCTANCE IS IN H/m

I 1 1 1

~; Our Results Reference [11]

! 0.3720 x 10
-10 ‘

% 1 0.3757 x 10-10

1~,~ -06889 w10-1’I -06657x 1’3-1’I..

I -0.6,89 x 10-1’
-11

C21
-0.6597 X 10

C22
0.2169 X 10-10 0.2217 x 10–10

I
co,, I ‘0.23,1. 10-’” 0.2391 X 10

-10

I CO12
-0.8427 .,.-” -0.8427>.1,-’1

I co,, -0.8427 x 10-” -0.8427 x 10-1’

I 0.2042 x ,0-’0
C022

0.2042 x 10-10
I

0.5437 x 10
-6 -6

’11
0.5501 x 10

0.2244 x 10
-6

’12
0.2235 x 10-6

,

0.2244 x 10
-6

“21
0.2292 x 10-6

-6 -6

I ’22
0.6368 X 10 0.6407 A 10
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+
t
H ●r.so

///// /’// -x
‘6’’’’’’’’/”

Flg 9. Amlcrostnphne.

TABLE VI
CHARACTERISTIC IMPEDANCES ZO IN OHMS FOR EXAMPLE 6, FIG. 9

I

5 + 3 +2- 1. 3+1

Bzzzq - ‘2=’”

o
///////////////////// //////

*X

Fig. 7, Coupled mlcrostrips between parallel conducting planes.

~

W/H

0.4

0.7

1.0

2.0

4.0

I_10.0

c- = 6.0 c = 9.5
r

R-f erence

[41

73.702

59.379

50.501

34.592

21.763

10.568

0.,
results

92.2785

73.9626

62.8109

4’2.9980

26.9709

12.9961

TABLE IV
COMPAtUSON OF RESULTS FOR EXAMPLE 4, FIG 7. UNITS ARF F\m

3“ r
results

<eference
[13]

%
c12

C21

c
22

Results obtained

by ..,w
C1=99E

o

Results obtained
by truncating
the upper gmu.d

plane

0.6264 x 10-10

-0.5724 Y 10-11

-0.5724 A 10-”

0.6264 x 10-10

Reference [3] 91.172

73.613

62.713

43.149

27.301

13.341

89.909

71.995

60.970

41.510

26.027

12.485

74.8970

59.9105

50.8097

34.6743

21.6679

10.3940

73.290

58.502

49.431

33.493

20.906

9.981

0.6233 X 10-10

-0.5,31 x 10-”

-0.5931 x 10-’1

0.6233 x 10
-10

0.6307 x 10-10

-0.5866 x 10-’1

-0.5866 x 10-’1

0.6307 a 10-10

ductor is conductor 2. The approach taken in this paper is

I
Y to truncate the upper ground plane at a finite width.

Another approach is to replace the upper ground plane

with a dielectric layer of permittivity c1 >> cz as discussed

in [11]. Results are compared in Table IV.

Example 5

This example consists of three conducting lines in three

dielectric layers as shown in Fig. 8. The left-hand conduc-

tor is conductor 1, the right-hand conductor is conductor 2,

and the cylinder is conductor 3. We used 12 subsections on

conductors 1 and 2, 8 subsections on conductor 3, and 20

subsections on each dielectric interface. Our computed

results are listed in Table V. No other results are available

for comparison.

Example 6

Consider a single microstrip with zero thickness on a

dielectric substrate above a conducting plane as shown in

Fig. 9. The characteristic impedance ZO of the microstrip is

[2]

‘0= “o&

(61)

where U. is the velocity of light in free space, C is the

capacitance of the rnicrostrip, and Co is the free-space

capacitance of the microstrip. For various ratios W/H,

●✌✝co

1.1!+-
1.0, _.Ezq

0.9. :!
1

~:-( ,0.+ ~ ●2=4.5C0

;- .8$ f1
II
1

I G3=6.8C0
I

////////’/////// 7 7/’ //’/’/’’//////////r
x

—

Fig, t3, Three conductors in three different dielectric layers.

TABLE V
RESULTS FOR EXAMPLE 5, FIG. 8. CAPACITANCE IS IN F\m.

INDUCTANCE IS IN H/m
—
-c

1

1

1

2

2

2

3

3

3
—

—.
1
—
1

2

3

1

2

3

1

2

3
—

ci3

0.1244 v 10-9

-0.1300 x 10-10

-0.6825 . 10
-10

-0.1300 x 10-10

0.3340 X 10-10

-0.7196 X 10-”

-0.6825 x 10-10

-0.7196 x 10-”

0.3523 X 10–9

c.
ox,

0.2828 X 10
-10

-0.7678 X 10-11

-0.1181 x 10-’0

-0.7678 x 10-11

0.2090 X 10-10

-0.3030 x 10-”

-0.1181 x 10-’0

-0.3030 v 10-1’

0.5468 X 10
-10

L
.1

0.4965 X 10
-6

0.1996 f 10
-6

0.1183 Y 10-6

0.1996 X 10-6

0.6163 k 10–6

0,7728 . 10
-6

0.1183 X 10-6

0.7728 < 10
-6

0.2331 X 10
-6

from x = 0.8 to x = +0.8. In Table III, our results are

compared ith those obtained by using the computer pro- Table VI compares our results for Z. with those of [41 ‘and

gram of [11]. The agreement is excellen~. - - [13]. The resuits attributed to [13] appear in [4] and ‘were

calculated from [13, eq. (l)], which is based on curves

obtained from Wheeler’s conformal mapping analysis [12].

Our results were obtained by using 12 subsections on the

strip, 15 on the part of the dielectric interface from – 2 W

Example 4

Fig. 7 shows an example with two ground planes. The

left-hand conductor is conductor 1. The right-hand con-
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+

Y

<=9.5C0

ty

%+#Ta’Lx~
Fig. 10. Two coupled microstrip lines between two ground planes.

TABLE VII
COMPARISON OF RESULTS FOR EXAMPLE 7, FIG. 10. CAPACITANCE
IS IN F/m. INDUCTANCE IS IN H/m. ZERO-THICKNESS RESULTS

ARE DENOTED BY *. NONZERO-THICKNESS RESULTS ARE

DENOTED BY A

H

c11

C12

C21

C22

call

C012

c021

C022

‘11

‘12

’21

&

3

* A

0.5356 x 10-9 0.5394 x 10-9

-0.9250 x 10-11 -0.9547 .“ 10-1’

-0.9250 z 10-11 -0.9547 x 10-’1

0.7834 x 10-9 0.7895 x 10-9

0.5466 x 10-10 0.55011 x 10
-10

-0.9439 Y 10
-12

-0.9742 x 10-’2

-0.9439 x 10-12 -0.9742 x 10-’2

0.7994 x 10
-10

0.8056 x 10-10

0.2033 x 10-6 0.2019 x 10-6

0.2401 X 10
-8

0.2442 x 10-8

0.2401 x 10-8 0.2442 x 10
-8

0.1390 Y 10
-6

0.1380 x 10-6

*

0.4852 x 10-9

-0.1798 x 10-’0

-0.1798 x 10-10

0.7557 . 10+

0.4,51 x 10-’”

-0.1835 x 10-11

-0.1835 x 10-”

0.7712 x 10-10

0.2246 x 10-6

0.5345 . 10-8

0.5345 ~ 10-8

0.1442 x 10-6

A

0.4884 x 10-9

.0.1841 x 10
-lo

-0.1841 x 10-10

0.7615 x 10
-9

0.4984 x 10”10

-0.18t9 x 10
-11

-0.1879 x 10-11

0.7770 x 10-10

0.2231 x 10-6

0.5396 x 10-8

0.5396 x 10-8

0.1431 x 10-6

to – W/2, and 15 on the part of the dielectric interface

from W/2 to 2W.

Example 7

Consider the two coupled microstrips between two

ground planes shown in Fig. 10. The left-hand strip is

conductor 1. The right-hand strip is conductor 2. Both

strips are infinitesimally thin. Parameters can be calculated

directly for the zero-thickness strips. Alternatively, the

zero-thickness strips can be approximated by strips having

a small but nonzero thickness. Table VII compares the

zero-thickness results with the nonzero-thickness results for

H = 3 and H =5. These results were obtained by using 10

subsections on each zero-thickness strip, 22 subsections on

each nonzero-thickness strip, and 36 subsections on the
upper ground plane from – 9 to +9. The nonzero-thick-

ness strips are 0.00} thick.

Example 8

Consider three infinitesimally thin strips embedded in a

three-layered dielectric between two ground planes as

shown in Fig. 11. The left-hand strip is conductor 1, the

right-hand strip is conductor 2, and the center strip is

conductor 3. Our computed results are listed in Table VIII.

No other results are available for comparison. Our results

were obtained by using 6 subsections on each strip, 38

subsections on each dielectric interface, and 38 subsections

on the upper ground plane.

.a2222Y////< ‘/////////////
?—--+8 ,, cl= 6.0e0

—----l-: 10.8
I

I 0.5
e*=9.5E

o

I I I
1 I

I 035’I 102 --f ; ( =4.2eo
Ii,

/%L-”’” ‘“2
0~ ‘0.3 ~0.8 ‘3 ,

/o//7//~////~

Fig. 11. Three striplines in a three-layered dielectric between two ground
planes,

TABLE VIII
RESULTS FOR EXAMPLE 8, FIG. 11. CAPACITANCEE IS TN ~/m

INDUCTANCE IS IN H/m

i

1

1

1

2

2

2

3

3

3

j

1

2

3

1

2

3

1

2

3

L

0.4900 x 10-9

-0.5737 x 10-’2

-0.6457 x 10
-lo

-0.5737.10-12

0.2459 x 10-9

-0.6138 x 10-10

-0.6457 x 10-10

-0.6137 x 10-10

0.2865 x 10-9

c.
01,

0.7773 x 10-10

-0.1036 x 10-12

-0.71,, x ,0-1’

-0.1036 x 10-12

0.5212 x 10–10

-0.9788 x 10-11

-0.7193 .10-”

-0.,788 x 10-11

0.3876 x 10-10

. .. . , ...

——

0.1&56 . 10-6

0.5630 x 10-8

0.2844 X 10-7

0.5630 x 10-8

0.2240 x 10-6

0.5762 x 10-7

0.2844 x 10-7

0.5762 x 10-7

0.3065 x 10-6

VI. IIISCUSSION AND CONCLUSION

The integral equations (9) and (11) for the total charge at

the surfaces of the conducting transmission lines, a; the

upper ground plane, and on the dielectric-to-dielectric in-

terfaces are simple in concept. Their solution by the method

of moments using pulse functions for expansion and point

matching for testing is also simple. Experience has shown

that this type of solution is both versatile and accurate.

Improvement in the rate of convergence might be obtained

by using better behaved functions for expansion and test-

ing, but at the cost of considerable complication.

The solution is valid for an arbitrary number of conduc-

tors and an arbitrary number of dielectric layers. It is valid

if a conductor touches a dielectric interface, straddles a

dielectric interface, or is totally within one dielectric re-

gion. Theoretically, the solution is valid if some conductors

are infinitesimally thin and others are of finite cross sec-

tion. However, the computer program of [23] was not

written to include the case where both infinitesimally thin

conductors and finite cross-section conductors are present.

Theoretically, the upper ground plane and the dielectric

interfaces are infinitely wide. However, the numerical solu-

tion is obtained by truncating them at a finite width. From

computational experience, it appears that the numerical

solution will be sufficiently accurate if they are truncated

at a width equal tc) two or three times the transverse extent

of the conducting transmission lines.

The solution ci~n be easily extended to multilayered

magnetic media by the concept of duality [24, sec. 3-2].
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However, this extension is seldom of practical interest and

is not considered here.

It should be remembered that the basic formulation is

exact only in the limit as the frequency approaches zero. At

high frequencies, the true solution is not a transverse

electromagnetic wave, but is a hybrid one. In other words,

the true solution is not obtained by solving Laplace’s

equation, but rather by solving a coupled wave equation.

This solution is extremely complicated, and experience

indicates that the transverse electromagnetic wave ap-

proximation is sufficiently accurate for most purposes.

APPENDIX

Relationship (22) exists between the inductance matrix

and the free-space capacitance matrix of a multiconductor

transmission line. Since we could not find a general proof

of (22) in the ‘literature, we give one here.

Consider the magnetostatic problem in which a specified

amperage of steady z-directed electric current is forced to

flow on each of the NC conductors of either Fig. 1 or Fig. 2

where the permeability of each dielectric layer is p ~. It is

assumed that the electric current flows only in the z

direction. The specified electric current will distribute itself

over the surface of each of the NC conductors, and surface

densities of z-directed electric current will be induced on

the ground plane(s) so that the normal component of

magnetic field is zero on each of the NC conductors and the

ground plane(s). The surfaces of the NC conductors are

called the “first NC interfaces. If there is an upper ground

plane, its surface is called the (NC+ l)th interface.

Let S, be the surface bounded by a z-directed line from

z = 0 to z = 1 on the zth interface, a z-directed line from

z = O to z = 1 on the lower ground plane, and connections

in the z = O and z = 1 planes. The magnetic flux +, passing

through S, is given by

(Al)

In (Al), C, is the contour that bounds S,, ~ is the magnetic

field, ~ is the magnetic vector potential, and A: is the z

component of the magnetic vector potential on the line

where S1 meets the i th interface. It has been assumed that

the z component of the magnetic vector potential vanishes

on the lower ground plane. Since the normal component of

magnetic field is zero on the i th interface, +, does not

depend on the placement of the line where S, meets the i th

interface. It is now evident from (Al) that

A=(p)=+, (A2)

where AZ(p) is the z component of magnetic vector poten-

tial at an ~rbitrary point p on the ith interface, and ~, is a

constant flux. Equation (–A2) annihilates the normal com-

ponent of magnetic field on the surface of the i th interface.

Using image currents to annihilate the normal compo-

nent of magnetic field on the lower ground plane, we write

A.(p) as—

where J1 is given by either (3) or (4). Furthermore, J, ( p’) is

the z component of electric current per unit length ofi the

J1 interfaces, p’ is the point at which the differential

element of len~th dl’ is located, and ~ is the image of p’

about the lower ground plane. Substitution of (A3) in~o

(A2) yields the magnetostatic equation

(A4)

Consider the electrostatic equations (9) and (11). If all

dielectric layers are replaced by free space, the total charge

density UT reduces to the free charge density OF. Conse-

quently, the electrostatic equation (9) becomes

(A5)

Furthermore, the electrostatic equation (11) disappears.

The solution ~ ( p’) to (A4) is of the form—

(A6)

where J~’) ( p’) is the solution that would result if ~, = 1 and

all other ~‘~ were zero. In (A6), the index 1 terminates at N,

because, if there is an upper ground plane, then it has been

assumed that the z component of the magnetic vector

potential vanishes on it so that ON<+~ is zero. The solution

u~( p’) to (A5) is of the form—

(A7)

where u~ J( p’) is the solution which would result if ~ = 1

and all other V‘s were zero. In (A7), the index i terminates

at NC because the upper ground plane, if present, is at zero

potential. It is evident from (A4) and (A5) that

J!’(P’)=*’JW).
Substitution of (A8) into (A6) gives

(A8)

(A9)

The integral over 1, of (A7) is

QJ = S Co,IV, j=l,2, . ..N. (A1O)
/=1

where Q, is the free charge per unit length on the J th

conductor and CO], is the ji th element of the free-space

capacitance matrix.

Co,, = ~uf)(p’jall’,
(

i=l,2, . ..NC

/ J=1,2, . ..N” (All)c

The integral over 1, of (A9) is

. ,’(
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where Ij is the net z-directed electric current on the j th

conductor and COji is given by (All).

Solving (A12) for the r)’s in terms of the 1 ‘s, we obtain

(A13)

where [C. ]fil is the ijth element of the inverse of the

free-space capacitance matrix. This inverse exists because

the free-space capacitance matrix Co is positive definite, In

view of the definition of the inductance matrix L, the

desired relationship (22) between L and COis evident from

(A13).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

P. Silvester, “ TEM wave properties of rnicrostnp transmission
lines:’ Proc. Inst. Elec. Eng., vol. 115, pp. 43-48, Jan. 1968.
T. G. Bryant and J. A. Weiss, “Parameters of microstnp transmis-
sion lines and of coupled pairs of microstnp lines,” IEEE Trans.

Microwaue Theo~ Tech., vol. MTT-16, pp. 1021-1027, Dec. 1968.
W. T. Weeks, “Calculation of coefficients ,of capacitance of multi-
conductor transmission lines in the presence of a dlelecttic inter-
face; IEEE Trans. Microwave Theory Tech., vol. M~-18, pp.
35-43, Jan. 1970.
A. Farrar and A. T. Adarns, “Characteristic impedance of micro-
strip by the method of moments,” IEEE Trans. Microwave Theory
Tech., vol. MTT:18, pp. 65-66,. Jan. 1970.
E. Yamashita and K. Atsuki, “Strip’ line with rectangular outer
conductor and three dielectric layers,” IEEE Trans. Microwaue
Theory Tech., vol. MTT-18, pp. 238-244, May 1970.
J. L. Allen and M. F. Estes, “Broadside-coupled strips in a layered
dielectric medium,” IEEE Trans. Microwave Theory Tech., vol.
MTT-20, pp. 662-669, Oct. 1972.
J. L. Aflen, “Odd and even mode capacitances for coupled strips in
a layered medium,” Inr. J. Electron.,’ vol. 35, pp. 1-13, July 1973.
A. Farrar and A. T. Adams, “ Multilayer microstrip transmission
lines,” IEEE Trans. Microwave, Theory Tech., vol. MTT-22, pp.
889-891, Oct. 1974.
R. Crampagne, M. Ahmadpattah, and J. Guiraud, “A simple method
for determining the Green’s function for a large class of MIC lines
having multilayered dielectric structures,” IEEE Trans. Microwaoe
Theory Tech., vol. MTT-26, pp. 82-87, Feb. 1978.,
C. E. Smith and R. S. Chang, “ Microstrip transmission line with
finite-width dielectric’ IEEE Trans. Microwaue Theory Tech., vol.
MTT-28, pp. 90-94, Feb. 1980.
C. Wei and R. F. Barrington, “Computation of the parameters of
multiconductor transmission lines in two dielectric layers above a
ground plane,” Depart. Electrical Computer Eng., Syracuse Urtiver.,
Rep. TR-82-12, Nov. 1982.
H. A. Wheeler, “Transmission-line properties of paraflel strips
separated by a dielectric sheet,” IEEE Trans. Microwave Theory
Tech., vol. MTT-13, pp. 172-185, Mar. 1965.
H. Sobol, “Extending IC technology to microwave equipment:
Electronics, vol. 40, pp. 112-124, Mar. 20, 1967.
E. Yamashita, “Variational method for the analysis of micro@p-
like transmission lines,” IEEE Trans. Microwaue Theory Tech., vol.
MTT-16, f@ 529-535, Aug. 1968.
R. Mittra and T. Itoh, “Charge and potentiaf distributions in
shielded striplines,” IEEE Trans. Microwaue Theory Tech., vol.
MIT-18, Pp. 149-156, Mar. 1970.
A. Farrar and A. T. Adams, “Computation of propagation con-
stants for the fundamental and higher order modes in microstnp,”
IEEE Trans. Microwaue Theory Tech., vol. MTT-24, pp. 456-460,
July 1976.
T. Itoh and A. S. Hebert, “A generalized spectral domain analysis
for coupled suspended microstriplines with tuning septums:’ ~EEE
Trans. Microwaue Theoty Tech., vol. MTT-26, pp. 820–826, Oct.
1978.
T. Itoh, “Generalized spectraf domain method for multiconductor
printed lines and its application to turnable suspended microstrips,”
IEEE Trans. Microwaue Theory Tech., vol. MTT-26, pp. 983-987,
Dec. 1978.
R. Plorisey and R. E. CoUin, Principles and Applications of Electro-

magnetic Fields. New York: McGraw-Hill, 1961.

[20]

[21]

[22]

[23]

[24]

D. Kajfez, “ h4ulticonductor transmission lines,” Depart. Electrical
Eng., Univ. Mississippi, June 1972. Also published as Interaction
Note 151 by Dr. Carl Baum, Air Force Weapons Laboratory (EL),
Kirdand AFB, NM 87117.
R. F, Barrington, Field Computation by Moment Methods. New
York: Macmillan Co., 1968. Reprinted by Krieger Publishing Co.,
Melbourne, FL, 1982,
H. B. Dwight, Tables of Integrals and Other Mathematical Data,

Fourth Ed. New York: Macmillan Co., 1961.
C. Wei and R. F. Barrington, {’Extension of the multiconductor
transmission line solution to zero-thickness conductors and to con-
ductors betwetm parallel ground planes,” Depart. Electrical “C~m-
puter Eng., Syracuse Univer., Rep. TR-83-5, ~ar. 1983.
R. F. Barrington, Time-Harmonic Electromagnetic .Fie[ds. New
York: McGraw-Hill, 1961. .

+

Cao Wei was born in Changsha, Humm Pro-
vince, China, in 1939. He graduated and received
dte B.S. degree from the Beijing Institute of Posts
and Telecommunications in 1959. ‘

After graduation, he taught mathematics for
three years in the Nanjing Instituti of ~osts and
Telecommunications, Nanjing, China. He then
returned to the Beijing Institute, of. Posts and
Telecommunications to study in the Department
of Radio Telecommunication,, from w~ch he
graduated in 1965. Since then, he has taught and

done reseamh in the areas of electromagnetic, microwave techniques, and
antennas M the Nartjing Institute of Posts and Telecommnnica~ions. In
September 1981, he came to the United States as a Visiting Scholar to
undertake research with Prof. R. F. Barrington in the Departmefht of
Electrical and Computer Engineering, Syracttse University, ,

Roger F. Harrhwton @’48-A’53-M57-SM62-
F’6~) was born ii Buffrdo, NY, on December 24,
1925. He received the B.E.E. and M.E.E. degrees
from Syracuse University, Syracuse, NY, in 1948
and 1950, respectively, and the Ph.D. degree
from Ohio State University, Columbus, OH, in
1952.

From 1945 to 1946, he served as an Instructor
at the U.S. Naval Radio Materiel School,
Dearborn, MI, and from 1948 to 1950, he was

,. ,8. employed as an Instructor and Research Assis-
tant at Syracuse University. While studying at Ohio State University, he
served as a Research Fellow in the Antenna Laborato@. Since 1952, he
h~ been on the faculty of Syracuse University, where lk is presently
Professor of Electrical Engineering. During 1959-1960 he was Visiting
Associate Professor at the University of Illinois, Urbana, in 1964 he’ was
Visiting Professor at the University of California, Berkelej, and in 1969
he was’ Guest Professor at the Technicaf University of Denmark, Lyngby,
Denmark.

Dr. Harnngton is a member of Tau Beta Pi, Sigma Xi, and the
American Association of University Professors.

*

Joseph R. Mautz (S’66-M67-SM75) was born
irt Syracuse, NY, on April 29, 1939. He received
the B.S., M. S., and Ph.D degrees in electrical
engineering from Syracuse University, Syracuse,
NY; in 1961, 1965, and 1969, ~espectively.

He is a Research Engineer in the Department
of Electrical Engineering, Syfacuse University,
working on radiation and scattering problems.
His primary fields of interest are electromagnetic
theory and applied mathematics. ‘He is currently
working in the area of numericaf methods for
solving field problems.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 32, NO. 4, APRIL 1984450

,,
Tapan K, Sarkar (S’69-M76-SM81) was born
in Calcutta, India, on August 2, 1948. He re-
ceived the B.Tech. degree from the Indian In-
stitute of Technology, Kharagpur, India, in 1969,
the M. SC.E. degree from jhe University of New
Brunswick, Fredericton, Canada, in 1971, and
the M.S. and Ph.D. degrees from Syracuse Uni-
versity, Syracuse,,NY, in 1975.

From 1969 to 1971, he served as an Instructor
at the University of New B~nswick. While
studying at Syracuse University, he served as an

Instructor and Research Assistant in the Department of Electrical and
Computer Engineering, where he is presently an Adjunct Assistant Profes-
sor. Since 1976, he has been an Assistant Professor at the Rochester
Institute of Technology, Rochester, NY. From 1977 to 1978, he was a
Research Fellow at the Gordon McKay Laboratory of Harvard Univer-
sity, Cambridge, MA. His current research interests deaf with system
identification, signaf processing, and anafysis of electrically large electro-
magnetic systems.

Dr. Sarkar is a member of Sigma Xi and URSI Commission B.

*

Short Papers

Determination of the Characteristic Impedance by a

Step Current Density Approximation

STEPHAN A. IVANOV AND GEORGI L. DJANKOV

Abstract —The step current densities are used to determine the char-

acteristic impedance of a ~ansmission line with rectangular shape of the

conductors. Numerical results for different rectangular lines with asymmet-

rical position of the inner conductor are presented. The comparison of the

results for the square and rectangular coaxial lines shows quite good

agreement with the known data.

I. INTRODUCTION

The characteristic impedance of the rectangular coaxial trans-

mission line can be determined with good accuracy for all cases

of interest [1]. When the &tis of the inher and outer conductors

does not coincide and their dimensions differ considerably, the

problem becomes complicated. A general expression for the char-

acteristic impedance is derived in [2], but no numerical data are

given for the line with asymmetrical position of the conductors.

Also, a doubly eccerttric rectangular line is considered by Chen

[3] for the case of a sufficiently small gap between conductors.

An analytical expression for the characteristic impedance of the

rectangular line with arbitrq dimensions can be found in [4].

Since the impedance in [4] is calculated by the utilization of the

mean value current densities, which may differ considerably from

the true current distribution orI the inner conductor surface, an

error of several percent exists. The purpose of the present short

paper is to improve the accuracy of the characteristic impedance

calculation by using the step current density approximation. In

this way, the edge discontinuity of the current distribution is

taken into consideration and an error less than one percent for

the impedance values can be obtained.

II. THEORETICAL lZESULTS

The investigated rectangular transmission line is shown in Fig.
1. Since the cross section of this line coincides with the single cell

of the four-conductor line considered in [4], the characteristic

impedance can be determined by the expression (4) in [4]—the
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case of the odd–odd mode of excitation. Here it is proposed that
the current distributiori J~(1) be replaced by a set of step current
densities J~q. For the case when the l~-wall is divided into N~

intervals with a length lk \Nk, the final result for the characteris-
tic impedance of the investigated line can be expressed by the
formula

~’m=~’r~=cOsm++THc
The coefficients Z,,q,m = Zj,q,m are determined as fOllOWS:

z = Zlzqrm = Z22qrm = e-m”wfq-’+l/Nl.ZJllqm

.[l+e- 2tn7r(B– W(q–,+1/Nl,2))
1

[
+ e–mm W(q–r–l/N~, ~) 1+ ~–2m9r(B– W’(q-~-l/iV1,2))

1

[
_ze–mm W(q–r/Nl, z) 1+ ~–2m7r(B– W(q–r/N1, z))

1

.-(1 - ~-m~(~/M,2) 2J [e-mm(2S+ W(q+,-2/7V~,2))

. + e–mn(2B–2S– W(q+r/Nl,2))
1

%’qrm = .z23qrm
= (~- e-(m~~/W2))f~_ e-2FmSJ

.[e- nzm Pv(q-1/,vl,2) + e–mm(2B–2S– W(17/ZV1,2))

1

“qrm = (1 - ~-2m7sz )[~_e-2m.(B-s- w)]

z 14qrm = Z1’qrm = (~-e-( m~W/N~,2))

.[~_ e-m@S+ W(2q-1/Nl:,))]

.[e- m~w(l–(q/Nl, z)) — e– mm(2B–2S– W(l–(q/Nl,2)))
1

z 34qrm = e
-m.w(~_.e-2mzs )[~_ e-2mr(B-s- w)]

,,qrn, = [1- e-2mm(s+ ~)][~- e-2rn7{B-s- WJ], ~z
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