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" Abstract —A method for computing the capacitance matrix and induc-
tance matrix for a multiconductor transmission line in a multilayered
dielectric region is presented: The number of conductors and the number of
dielectric layers are arbitrary. Some of the conductors may be of finite
cross section and others may be infinitesimally thin. The conductors are
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either above a single ground plane or between two parallel ground planes.
The formulation is obtained by using a free-space Green’s function in
conjunction with total charge on the conductor-to-dielectric interfaces and
polarization charge on the dielectric-to-dielectric interfaces. The solution is
effected by the method of moments using pulses for expansion and point
matching for testing. Computed results are given for some casés where all
conducting lines are of finite cross section and other cases where they are
infinitesimally thiri.

I. INTRODUCTION

HE OBJECTIVE of this analysis is to détermine the
_ capacitance matrix and the inductance matrix of a
multiconductor transmission-line system. Some of the con-
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ductors may be of finite cross section. Others may be
infinitesimally thin. All of them are embedded in a multi-
layered dielectric material that is either above a single
ground plane. or contained between two ground planes.
Each dielectric-to-dielectric interface is parallel to the
ground plane(s).

Multiconductor transmission lines in multilayered media
have been investigated by means of Green’s function tech-
niques [1]-]11], conformal mapping [12], [13], a variational
method [14], a Fourier transform method [15], a Fourier
integral method [16], and a generalized spectral domain
analysis [17], [18]. In [3] and [11], the problem of multicon-
ductor transmission lines in two dielectric layers is ap-
proached by using a Green’s function obtained from image
theory. For a two-layered dielectric, this Green’s function
consists of four expressions, each containing an infinite
series of images. The extension of this type of Green’s
function to three dielectric layers consists of nine expres-
sions, each containing a doubly infinite series of images [§].
The extension of this type of Green’s function to more
than three dielectric layers is impractical because, for N
dielectric layers, it would consist of N expressions, each
containing N —1 infinite series.

Taking an alternative approach, the present paper uses a
free-space Green’s function in conjunction with total charge
on the conductor-to-dielectric interfaces and polarization
charge on the dielectric-to-dielectric interfaces. This ap-
proach is similar to the one in [10]. The free-space Green’s
function approach results in a simpler formulation of the
problem, but requires the solution of a larger matrix equa-
tion. This formulation has the advantage that there is no
theoretical limit to the number of dielectric layers that can
be treated, but a practical limit is imposed by the speed
and storage of the computer. For computational reasons,
the transverse width of the dielectric layers is taken to be
finite instead of infinite. If the upper ground plane is
present, its width is also taken to be finite.

II. STATEMENT OF THE PROBLEM

Consider a system of multiconductor transmission lines
in a multilayered dielectric region above a ground plane as
shown in either Fig. 1 or Fig. 2. The system is uniform in
the direction perpendicular to the xy plane. An arbitrary
number N, of perfect conductors are embedded in an
arbitrary number N, of dielectric layers. Some of the
conductors may be of finite cross section. Others may be
infinitesimally thin strips that appear as curves in the xy
plane. The permittivity of the jth dielectric layer is €,. In
Fig. 1, the uppermost dielectric extends to y = oo. In Fig, 2,
there is an upper ground plane.

A lower ground plane is present in both Figs. 1 and 2.
This lower ground plane extends from x = — oo to x = c0.
Nominally, the upper ground plane and the dielectric
layers also extend from x = — o0 to x = 0. However. the
numerical solution of Section IV is obtained by truncating
the upper ground plane and the dielectric layers at a finite
negative value of x and a finite positive value of x.

The objective is to determine the capacitance matrix and
the inductance matrix of the multiconductor transmission-
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Fig. 1. A multiconductor transmussion line 1n a multilayered dielectric
region above a ground plane.
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Fig 2. A multiconductor transmission line in a multilayered dielectric

region between two ground planes.

line system. The ijth element of the capacitance matrix is
the free charge per unit length of surface on the ith
conductor when the potential of the jth conductor is one
volt and the other conductors are grounded. In [3], the
elements of the capacitance matrix are called coefficients
of capacitance. In [19, p. 97], the diagonal elements of the
capacitance matrix are called coefficients of capacitance,
but the off-diagonal elements are called coefficients of
induction. The inductance matrix is the product of (pqeq)
with the inverse of the capacitance matrix that would exist
if the multilayered diclectric material were replaced by free
space [20, eq. (2.24)]. Here, p, is the permeability of free
space, and €, is the permittivity of free space.

Once the capacitance and inductance matrices of the
multiconductor transmission-line system are known, the
complete behavior of the system can be determined, to the
transmission-line approximation, by multiconductor trans-
mission-line theory [20].

TII. ANALYSIS

Consider the capacitance matrix for the problem stated
in the previous section. The ijth element of this matrix is
the frec charge per unit length of surface on the ith
conductor when all conductors except the jth conductor
are grounded and the jth conductor is charged to a poten-
tial of one volt. Hence, the elements of the capacitance
matrix can be determined by relating the free charge per
unit length of surface on the conductors to the potentials
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of the conductors. The free charge per unit length of
surface on one of the N, conductors is the integral of the
free charge per unit area over the intersection of the
surface of the conductor with the xy plane. Thus, the
elements of the capacitance matrix can easily be de-
termined once a relationship has been established betweéen
the free charge per unit area on the surfaces of the conduc-
tors and the potentials of the conductors.

A total charge o, per unit area is assumed on the
conductor-to-dielectric interfaces and the N, —1 dielectric-
to-dielectric interfaces. The conductor-to-dielectric inter-
faces consist of the surfaces of the N. conductors and the
upper ground plane, if present. The jth dielectric-to-dielec-
tric interface is the plane of constant y where the dielectric
layers €, and ¢, ; meet, provided that no conductors lie on
this plane. If conductors lie on this plane, then the jth
dielectric-to-dielectric interface is the portion of this plane
not occupied by conductors. On each conductor-to-dielec-
tric interface, total charge is the sum of free charge and
polarization charge. On each dielectric-to-dielectric inter-
face, total charge is polarization charge. In Section IV, the
total charge on the upper ground plane, if present, and the
dielectric-to-dielectric interfaces is truncated at a finite
negative value of x and a finite positive value of x.

At any point p in the xy plane and above the lower
ground plane, the potential ¢ is due to the combination of
o and the image of o, about the lower ground plane.
Hence

1 R Ll R
o(0) = 70 /; /;07"(3 )1n(|£_£,|) ar (1)

where /, is the contour of the jth interface in the xy plane.
The first N, interfaces are the surfaces of the N, conduc-
tors. If there is no upper ground plane, the next N, —1
interfaces are the dielectric-to-dielectric interfaces. If there
is an upper ground plane, the (N, +1)th interface is the
surface of this ground plane, and the next N, —1 interfaces
are the diclectric-to-dielectric interfaces. Accordingly

J=J+J, (2)
where, in the absence of the upper ground plane

J=N,

SH=N,—1 (3)
and, in the presence of the upper ground plane

Ji=N.+1

J,=N,-1. (4)

It is evident that J; is the number of conductor-to-dielectric
interfaces and that J, is the number of dielectric-to-dielec-
tric interfaces. In (1), dI” is the differential element of
length at p’ on /,, and p’ is the image of p” about the lower
ground plane.

The electric field E is given by

E(p)=-v¢(p). (5)

Substituting (1) for ¢ in (5), and assuming that p is not on
any of the interfaces {/ } so that the ¥ operator may be
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(6)
Taking the limit of (6) as p approaches the interface /,, we
obtain the following formula for E valid on /;:
2 ) @

_}__jé ][GT(B,)( B“E’z_ e_f
o

Here, n is the unit vector normal to /, at p. The side of
I, toward which n points is called the positive side of /.
The side of /, away from which » points is called the neg-
ative side of /. In (7), E*(p) is the electric field on the
positive side of /,, and E~ (})) is the electric field on the
negative side of /. In (7), f l denotes the principal value of
the integral over l

On each conductor to-dielectric interface, the potential is
constant. Denoting the potential on the ith conductor-to-
dielectric interface by V,, we obtain

{B on/,

taken under the integral sign, we obtain

I B'_P P
Zf‘” (Ip PTG

— 2775

E*(p)=

ar(p) p onl
i=1,2,-

(8)

V, is zero for

o(p)=V, i=1.2,---J,

If the upper ground plane is present, then 7
i = J;. Substitution of (1) for ¢(p) in (8) ylelds

p— on/,
l 4 dl’= {B .
|p I =12,

The displacement vector is called D(p). The y compo-
nent of D(p) is continuous across each dielectric-to-dielec-
tric interface. Since D(p) is the product of permittivity
with electric field, it follows that

€I—]lE+ (B)Z‘ = €1+1—J1E4 (B)y\’

27760/*1.[ 9

p onl (10)
i=J+1,J,+2,---J
where u,, is the unit vector in the y direction. In Figs. 1 and
2, the y d1rect10n is upward. In (10), €,_; and E*(p) are,
respectively, the permittivity and electrlc field on theupper
side of /,. Moreover, ¢,,,_, and E"(p) are, respectively,
the permittivity and electric field on the lower side of l,.
Substitution of (7) for E *(p) in (10) yields, after d1v151on
by ((l—'.]l - €l+1*.]1)
(€1~J1 + et+1~J1)

T
260(61—11 €4 711)
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Equations (9) and (11) are a set of J integral equations in
the unknown total charge o, per unit area on the interfaces
whose contours are {/ s j=12,---J}. In Section IV, the
method of moments will be used to obtain an approximate
numerical solution for o, in terms of {V,,i=1,2,--- N,}.
Since (9) and (11) are linear, this solution is of the form

NC

Or = Z oV,
=1

(12)

where o is the solution which would result if the potential
V. was unity and all other potentials were zero.

As stated earlier, some of the conductors may be of
finite cross section, and others may be infinitesimally thin
strips. If the ith conductor is of finite cross section, then /,
is a closed curve. On this ith conductor

or =€ L-n (13)
op=¢E-n (14)
where E is the electric field just outside the conductor, r is
the unit normal vector which points outward from the
surface of the conductor, € is the permittivity just outside

the conductor, and o is the free charge per unit area on
the conductor. Equations (13) and (14) imply that

e(p)

(15)

on the surface of the ith conductor provided that this
conductor is of finite cross section.

If the ith conductor is an infinitesimally thin strip, then
/, runs from one edge of the strip to the other. The free
charge o, per unit area on the surface of the ith conductor
is then given by

OF(B)Z OT(B)

=("E*—€¢E )n (16)

where x is a unit vector normal to the strip. The side of the
strip toward which n points is called the positive side. The
side of the strip away from which » points is called the
negative side. In (16), ¢" and E™* are, respectively,
the permittivity and electric field on the positive side of the
strip. Moreover, ¢ and E are, respectively, the permittiv-
ity and electric field on the negative side of the strip.
Substitution of (7) for £ * in (16) leads to

e (p)+e (p)

or(p) =5 or(p)
e (p)—e¢ (p)
2me,,
! () p-p PP
El ][/,UT £ (Ie—e’l2 o —@12)
ndl’ (17)

on the surface of the ith conductor, provided that this
conductor is an infinitesimally thin strip.

Regardless of whether the ith conductor has finite cross
section or is an infinitesimally thin strip, the free charge Q,
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per unit length on it is given by
Q,=1/0F(p)cﬂ, i=1,2,---N, (18)
A

where dl is the differential element of length at p on /. In
view of (12) with the index i replaced by j, substitution of
(15) or (17) for o, in (18) gives

0= EZ

i=1,2,---N, (19)

%) ] °
where, if the ith conductor is of finite cross section
e(p)
¢,=/
[I

. oy (p)dl.
0
If the ith conductor is an infinitesimally thin strip, then

"}[{ p)+E (p) o8 (0)

(20)

2e
i'{<ﬂ(j Ll S St I B
o i PER ~r h
i S e e 1P

(21)
In obtaining (21), the index j in (17) was replaced by & in
order to avoid confusion with the index j which appears in
C,,- The coefficient C,, is the jjth clement of the capaci-
tance matrix.

The inductance matrix is called L. The ijth element of L
is the magnetic flux passing between a unit length of the
ith conductor and the lower ground plane when one ampere
of net z-directed electric current flows on the jth conductor
and there is no net z-directed electric current on any of the
other conductors. Here, z is the coordinate perpendicular
to the xy plane. It is shown in the Appendix that

L=;1,0£0[C0]71 (22)
where C, is the capacitance matrix which would result if all
dielectric layers were replaced by free space.

“1V. DEVELOPMENT OF THE MOMENT SOLUTION

In this section, the integral equations (9) and (11) are
solved numerically for o; by means of the method of
moments [21].

A solution ¢, to (9) and (11) is sought in the form

N
or(p)= 2 or,P,(p)

n=1

(23)
where {P,(p),n 2,---N} are unit pulse functions
which cover {/.j=1,2,---J}. Moreover, {os,, n=
1,2,--- N} are constants to be determined. The upper
ground plane and dielectric layers are now truncated at a
finite negative value of x and a finite positive value of x so
that only pulse functions of finite domain are needed.



WEI ef al.: MULTICONDUCTOR TRANSMISSION LINES

Given an arbitrary point on the truncated {/ T =12,
J }, there is an integer m such that, at this point

P, =1
P =0, n=12,---m-1,m+1,---N. (24)
It follows from (23) and (24) that
Or = Opy, (25)

at this point.

Let {P,(p),n= N} be the pulses on {7, j=
1,2,---J;}, and let {P(p),n—Nl+1 N +2,- N} be
the pulses on {/, j=J;+1,/;+2,---,J }. Morcover, let
P, be the mldpomt of the domain of P,(p) for m=
1,2,---N.

Substltutmg (23) for o7 in (9) and then enforcing (9) at
p=p,form=12,--- N, we obtain

Z mnOTn = z ’

n=1

m=1,2,--- N, (26)

where i is such that p,, is on /,, and
0 —F =1,2,-+- N
S, ==t [ n Lol 43 P {m !
277'60 Al IBm—_p’l n=1,2,---N

(27)

where A/, is the domain of P,(p).
Substituting (23) for ¢, in (11) and then enforcing (11) at

B=Bmform=N +1, N; +2,--- N, we obtain
Z 0ra =0,  m=N+1,N+2,---N (28)
where, for m#n
Smn=2;€ / ( - _—61,2_ - “gz L‘ydl/’
0 8L\ 1w = 17 10y — P
(BT )

In (28), S,,,, is given by

mm

LI e o S 1 o 4 ,
2€0( - ) 2me ][ 2| d
€ol€—y, T Cr1-y 07Al,\ |0, — 0]

1 [
h / — — | udl,
2meq Jar,\ 1o, — p1* |

m=N,+1,N,+2,---N

(30)

In (30), i is such that p,, is on Al,. If m # n, but if p,, and P,
are on the same dielectric-to-dielectric interface, then (29)
reduces to

1 —p ,
Sy ="— 27750[ ( Ipm—plz) L. (31)
Formulas for calculating S,,, are given later in this
section. After S, has been calculated for m=1,2,--- N
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o]
Fig. 3. The straight line segment A/, with length A, midpoint (x,, ,),
and onentation 8,
and n=1,2,---N, (26) and (28) combine to form N

simultaneous equations in the N unknowns {og,,n

1,2,--- N}. These simultaneous equations can then be
solved for {or,,n=1,2,---N}intermsof {V,,i=1,2, -
N_}. The solution is of the form
N,
o, = L of), (32)

1=1

where {o{),n=1,2,---N} is the solution which would
result if ¥V, were unity and all other V’s were zero. Sub-
stituting (32) into (23) and comparing the result with (12),
we obtain
N
of’(p)= XL of)P,(p). (33)
n=1

The elements of the capacitance matrix can be calculated
by replacing i by j in (33) and then substituting the
resulting expression for o{(p) in (20) and (21). The
integral with respect to / in (21) is approximated by
sampling the integrand at p = p,, for all values of m for
which p,, is on /.. At p = p,,, the integrals with respect to [’
in (21) are similar to the integrals appearing in expressions
(29) and (30) for S

To facilitate calculatlon of Sm,,, Al, is approximated by
the straight line segment shown in Fig. 3. This segment is
of length A, and makes an angle 6, with the x axis. The
midpoint of this segment is p,. Now

(34)

where u is the unit vector in the x direction, and x, and y,
are, respectively, the x and y coordinates of p,. Similarly,
the vectors p” and §’ in expression (27) for S, , are written
in terms of their rectangular coordinates as

Bn = Zx'xn + yyyn

p=u Xty (35)

P=ux —u,y (36)
As can be seen from Fig. 3

x'=x,+1cosb, (37)

y’'=y, +1tsind,. (38)
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Due to the equations of the previous paragraph, (27)
becomes

/7 2 ’ 2
__1 qpame, (=) + (Dt )
mn n 2 2 dt’
dmeo L, | (x, = 'V + (3= »')
m=1,2,---N,
{n=1,2,---N (39)

where x” and y’ are given by (37) and (38), respectively.
After substitution of (37) and (38) for x’ and y’, (39)
reduces to

m=12,- N
Smn=Fl(al’bl)—Fl(az’bz)’ n=1,2,---N
(40)

where

(41)

a,=(x,,— x,)sind, +(y, + y,)cos¥,

b,=(x,,—x,)cos8, —(y, + y,)sinb, (42)
a,=(x,,—x,)sin, —(y, — y,)cos ¥, (43)
b2=(xm_xn)cosan+(ym_yn)5in0n (44)

and

1/2)4,

__ L —b 2. .2
F(a,b) 477% f (1/2)A,,—b1n(t +a?)dr.  (45)

Application of [22, formula 623.] to (45) gives
F(a,b)= [tln(t Fa?)-2

t=1/28,-b

(46)

If a is zero, then the tan~! term should be omitted from

+2atan‘1(i)
a

1==124,-»

(46).
Expressions (29) and (30) become
1 A
Snl" 2‘77.€ (Imn_lmn)’ m¢n’
m=N+1,N+2,---N
7
{n=l,2,---N (47)
s = RS A
" 2ep(e, g m €y y)  2mE Y
m=N,+1, N, +2,---N. (48)
The first integral in (30) has vanished because A/, is a

straight line segment. In (48), / is such that p,, is on /. In
(47) and (48)

Lo — O
Imn=/ ==y dl (49)
AL\ — 017
and
. [
L= [ | —=5|war. (50)
AL\ Py — Pl
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In the domam of integration of (49), p’ is never equal to p,,,
and in (50), " is never equal to p,,. ‘Hence, the integrands
in (49) and (50) are always finite.

Equations (34)—(36) reduce (49) and (50) to

Y=V’

1,24
Imn = i dt (51)
'/;l/ZA" (xm - x/)2+ (ym - y’)z
_/1/“" Y T _dr. (52)
V280 (% = )+ (3 + ')

Substitution of (37) and (38) for x” and y” in (51) and (52)
produces
— b,sing, ) F,(a,, b,)— (sind, ) K (a,, b, )
(53)
Ly = (Y yu + bysing,) F,(ay, by)+ (sinb, ) Fy (ay, by)
(54)

where a;, b, a,, and b, are given by (41)—(44). Moreover

mn = (.ym

1/24, dt
E(a,b 55
2(a,b)= ‘/1/2A,,—bl‘2+a2 (53)
and
(1/2)An —b tdt
Ef(a,b)= . 56
3(a,b) f~(1/2)A,,—btz+a2 (56)

If a =0, then, as is evident from the statement just after
(50), ¢ is never zero during the integration in (55). Hence, it
is easy to obtain

17124,—8
E(a,b)——[;]_l/%”‘b, a=0  (57)
which reduces to
A
F(a,b)=—"2—, a=0. (58)
bZ_lAz
4°-n

If a + 0, application of [22, formula 120.1.] to (55) gives
1/24, — b

F(a, b)—[ tan 1(a)] P

It is evident from the statement just after (50) that (12 + a?)
is never zero during the integration in (56). Hence, we
easily obtain

a#0. (59)

2)]1/2A,,—b

1
FB(a,b)=§[ln(t2+a ~1/28,—b (60)

which is valid regardless of the value of a.

V. NUMERICAL EXAMPLES

A computer program has been written for the special
case where all conductors are of finite cross section and for
the case where all conductors are infinitesimally thin [23].
This program was used to obtain the results given in this
section. These results agree well with those of various
references.
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Fig. 4. Coupled microstrips.

TABLE 1
COMPARISON OF RESULTS FOR THE COUPLED MICROSTRIP IN
F1G. 4. UN11S ARE F/m

Our Results Reference [11] . Reference (3}
¢y, 0.9165 x 10720 0.9017 x 10710 0.9224 » 10710
¢, ' -0.8220 x 107 -0.8059 x 1071 -0.8504 x 107}
¢y . -0.8220 x 1071} -0.8059 x 10711 -0.8504 x 10711
]
i 0.9017 x 1070 0.9224 x 10710
p

c i 0.9165 x 10710

Example 1

Consider the pair of coupled microstrips touching a
dielectric slab over a conducting plane as shown in Fig. 4.
The left-hand conductor is conductor 1. The right-hand
conductor is conductor 2. Table I compares our computed
results with those of [3] and [11]. For comparison, the
results of [3] have been changed to farads per meter. For
our results, we used 16 subsections on each conductor, and
on the dielectric interface we used 10 subsections from —9
to —4, 4 subsections from —1 to +1, and 10 subsections
from 4 to 9. The difference between our results and those
of [3] is less than 4 percent. The difference between our
results and those of [11] is less than 2 percent. The dif-
ference should become smaller as we increase the number
of our subsections.

Example 2

Consider two conductors in two different dielectric layers
above a ground plane as shown in Fig. 5. The left-hand
conductor is conductor 1. The right-hand conductor is
conductor 2. The number of subsections used on conductor
1 is 6, the number on conductor 2 is 6, and the number on
the dielectric interface is 16 extending from x = —0.8 to
x = +0.8. In Table II, our results are compared with those
obtained by using the computer program of [11]. The
agreement is excellent in all cases. In the table, C, is the
jth element of the capacitance matrix, C,,, is the ijth
element of the free-space capacitance matrix, and L, is the
ijth element of the inductance matrix.

Example 3

Here, the two conductors of the transmission line are
located in the same dielectric layer, as shown in Fig. 6. The
left-hand conductor is conductor 1. The right-hand con-
ductor is conductor 2. The number of subsections used on
conductor 1 is 6, the number on conductor 2 is 6, and the
number used on the dielectric interface is 16 extending
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Fig. 5. Two conductors in two different dielectric layers.

TABLE I
COMPARISON OF RESULTS FOR EXAMPLE 2, F1G. 5. CAPACITANCE IS
IN F/m. INDUCTANCE IS IN H/m

. Our Results ! Reference [11]
T
c I 0.3651 » 10710 { 0.3701 < 10710
1 i -10 ’ -10
c | -0.1562 x 10 I -0.1520 % 10
L2 -10 -10
€y j -0.1562 > 10 -0.1523 x 10
¢y | 0.2099 < 107 0.2108 « 107
[
Con1 0.2296 < 10710 . 0.2296 ~ 10710
Co12 -0.8808 x 107! ~0.8805 « 107!
Coo1 -0.8808 » 107 -0.8810 < 10”1
10 10
Co2 0.3772 x 10 0.3772 ¥ 10
- I -
1 0.5315 x 1070 | 0.5403 x 107
L, 0.1241 % 107° 0.1229 x 107
L, i 0.1241 x 1670 0.1265 x 107
Ly, \ 0.3235 ¥ 107° ] 0.3204 x 107°
y
Ry & 2]
.0y -2
\
i
| H €, *€
-+0.7 ) ! °
PZZ356
P95
I ] t i .
| byl | €,=6.8¢,
1
-0.3) -0.i; j0/0.] ,0.3 x
g 7, 7 777

Fig. 6. Two conductors in the same dielectric layer.

TABLE III
COMPARISON OF RESULTS FOR EXAMPLE 3, F1G. 6. CAPACITANCE 18
IN F/m. INDUCTANCE IS IN H/m

{ I Our Results Reference [11]
T T
¢y i 0.3720 x 1070 0.3757 x 10710
¢, I -0.6889 10 ~0.6657 x 1071
Cyy -0.6889 x 1071 -0.6597 x 10711
L S 0.2169 x 10710 0.2217 x 10710
| oLl 0.2391 x 1070 0.2391 x 10710
l o1z —0.8427 x 10711 _0.8427’x 107+t
| Coa1 -0.8427 x 107 1% -0.8427 x 1071t
E Coa3 0.2042 x 1010 0.2042 x 10719
., 0.5437 x 107° 0.5501 < 107°
[ 0.2246 x 1078 0.2235 x 107°
Ly 0.2244 x 107 0.2292 x 1070
i Ly, 0.6368 x 107 0.6407 « 107°
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Fig. 7. Coupled mucrostrips between parallel conducting planes.

TABLE IV
COMPARISON OF RESULTS FOR EXaMPLE 4, F1G 7. UNITS ARE F/m
Results obtained Results obtained Reference (3]
by using by truncating
€1=99E the upper ground
° plane
. 0.6233 x 10710 0.6264 x 10710 0.6307 x 10720
<, -0.5931 x 1071% -0.5724 % 1071 -0.3866 x 1071
Cpy -0.5931 x 1071t -0.5724 < 10711 -0.5866 x 2071
Chy 0.6233 x 10710 0.6264 x 10710 0.6307 % 1070
Y
0 €% ¢
de-p
1.0l
098] ! !
T T
t |
. --407 | €,=4.5¢
77 106 | 2745€
1 1
1 1 0.5 :
! ! .4 !
i 0.25: €,=6.8¢,
-03,-01,0%101 03 -
7 v i

Fig. 8. Three conductors in three different dielectric layers.

TABLEV
RESULTS FOR EXAMPLE 5, F1G. 8. CAPACITANCE IS IN F /m.
INDUCTANCE IS IN H/m

1] 3 °, Cons T
1)1 0.1244 x 107 0.2828 x 10710 0.4965 x 107
1|2 -0.1300 x 2072° | -0.7678 x 10711 0.1996 < 107°
13 -0.6825 ~ 10770 | -0.1181 x 10720 0.1183 » 10°° ;
2 |1 -0.1300 x 10710 | —0.7678 x 10711 0.1996 x 107° }
2 | 2 0.3360 x 10719 | 0.2090 x 10710 0.6163 x 1070
2 |3 -0.7196 x 10711 | -0.3030 x 1071 0.7728 ~ 107°
311 -0.6825 « 1070 | —0.1181 x 1070 0.1183 x 107°
3 2 -0.7196 x 107t -0.3030 x 1071t 0.7728 < 107
3|3 0.3523 x 107° 0.5468 x 10710 0.2331 x 107°

from x=—10.8 to x=+0.8. In Table III, our results are
compared with those obtained by using the computer pro-
gram of [11]. The agreement is excellent.

Example 4

Fig. 7 shows an example with two ground planes. The
left-hand conductor is conductor 1. The right-hand con-

W ‘o

°

Fig 9. A mucrostrip line.

TABLE VI
CHARACTERISTIC IMPEDANCES Z; IN OHMS FOR EXAMPLE 6, FIG. 9
1
£ =6.0 €= 9.5 |
r r
I
W/H Our Reference Reference Our Reference Reference
results [4] | {13] results [41 [13]
t
0.4 92.2785 91.172 ', 89.909 74.8970 73.702 73.290
[ 0.7 73.9626 73.613 71.995 59.9105 59.379 58.502
1.0 62.8109 62.713 60.970 50.8097 50.501 49.431
2.0 42.9980 43.149 41,510 34.6743 34.592 j 33.493
| .
4.0 26.9709 27.301 ! 26.027 21.6679 21.763 . 20.906
i I
10.0 12.9961 13.341 i 12.485 10.3940 10.568 | 9.981

ductor is conductor 2. The approach taken in this paper is
to truncate the upper ground plane at a finite width.
Another approach is to replace the upper ground plane
with a dielectric layer of permittivity €, > €, as discussed
in [11}]. Results are compared in Table IV.

Example 5

This example consists of three conducting lines in three
dielectric layers as shown in Fig. 8. The left-hand conduc-
tor is conductor 1, the right-hand conductor is conductor 2,
and the cylinder is conductor 3. We used 12 subsections on
conductors 1 and 2, 8 subsections on conductor 3, and 20
subsections on each dielectric interface. Our computed
results are listed in Table V. No other results are available
for comparison.

Example 6

Consider a single microstrip with zero thickness on a
dielectric substrate above a conducting plane as shown in
Fig. 9. The characteristic impedance Z of the microstrip is
2]

Zy,= !

 0y/CC,

where v, is the velocity of light in free space, C is the
capacitance of the microstrip, and C, is the free-space
capacitance of the microstrip. For various ratios W/H,
Table VI compares our results for Z,with those of [4] and
[13]. The results attributed to [13] appear in [4] and were
calculated from [13, eq. (1)], which is based on curves
obtained from Wheeler’s conformal mapping analysis [12].
Our results were obtained by using 12 subsections on the
strip, 15 on the part of the dielectric interface from —2W

(61)
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Fig. 10. Two coupled microstrip lines between two ground planes.

TABLE VII
COMPARISON OF RESULTS FOR EXAMPLE 7, F1G. 10. CAPACITANCE
1S IN F/m. INDUCTANCE 1S IN H/m. ZERO-THICKNESS RESULTS
ARE DENOTED BY *. NONZERO-THICKNESS RESULTS ARE
DENOTED BY A

i 3 5
* A * A

. 0.5356 x 107> | 0.5394 x 107° | o0.4852 x 107 | o.4884 x 1077
¢y | ~0.9250 x 1071 | —0.9547 x 1071 | —o.1708 x 10710 | -0.1841 x 10719
cyy | -0.9250 x 107 f-0.9547 x 107 | -0.1798 x 10710 | -0.1841 x 107
2 0.7834 x 1077 | 0.7895 x 107 0.7557 x 1077 b.7615 x 107°
Corp | 0.5466 10720 ] 0.5506 x 10720} 0.4951 x 10710 | o.4984 » 1071
Corg | -0-9439 ¥ 10712 0.9742 x 10722 | -0.1835 x 1072 | -0.1879 x 1071
Cogr | -0-9439 x 10717 | 09742 x 10712 | -0.1835 x 107 | -0.1879 x 10'”“
oza | 07296 x 1670 | 0.8056 x 10710 | 0.7722 % 1070 | 0.7770 x 107
- 0.2033 x 107 | 0.2019 x 107 | 0.2246 x 107 | b.2231 x 107°
L, 0.2601 x 1078 | 0.2442 x 1078 | 0.5345 x 107 | 0.5396 x 1078
Ly 0.2401 x 1078 | 0.2442 « 1078 0.5345 x 107 0.5396 x 107
L 0.1390 » 10° | 0.1380 x 107 0.1442 x 107 0.1431 x 107

to —W/2, and 15 on the part of the dielectric interface
from W/2 to 2W.

Example 7

Consider the two coupled microstrips between two
ground planes shown in Fig. 10. The left-hand strip is
conductor 1. The right-hand strip is conductor 2. Both
strips are infinitesimally thin. Parameters can be calculated
directly for the zero-thickness strips. Alternatively, the
zero-thickness strips can be approximated by strips having
a small but nonzero thickness. Table VII compares the
zero-thickness results with the nonzero-thickness results for
H =3 and H =5. These results were obtained by using 10
subsections on each zero-thickness strip, 22 subsections on
each nonzero-thickness strip, and 36 subsections on the
upper ground plane from —9 to +9. The nonzero-thick-
ness strips are 0.00] thick.

Example 8

Consider three infinitesimally thin strips embedded in a
three-layered dielectric between two ground planes as
shown in Fig. 11. The left-hand strip is conductor 1, the
right-hand strip is conductor 2, and the center strip is
conductor 3. Our computed results are listed in Table VIIL
No other results are available for comparison. Our results
were obtained by using 6 subsections on each strip, 38
subsections on each dielectric interface, and 38 subsections
on the upper ground plane.
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Fig. 11. Three striplinesin a three-layeréd dielectric between two ground
planes.
TABLE VIII

RESULTS FOR EXAMPLE §, F16. 11. CAPACITANCE IS IN F/m.
INDUCTANCE Is IN H/m

i 3 ¢ S, L,
]

1 1 0.4900 x 107 0.7773 x 16720 0.1456 < 1078
1 2 -0.5737 x 1072 | -0.1036 x 10712 0.5630 < 1078
1 3 -0.6457 x 10720 | -0.7193 x 10712 0.2844 x 1077
2 1 ~0.5737 < 10722 | -0.1036 x 10722 0.5630 x 1078
2 2 0.2459 x 1072 0.5212 x 10710 0.2240 » 107°
2 3 ~0.6138 x 10720 | -0.9788 x 107 0.5762 x 1077
3 1 “0.6457 x 10720 | -0.7193 « 10712 0.2844 x 1077
3 2 -0.6137 x 10710 | -0.9788 x 10711 0.5762 x 1077
3 3 0.2865 x 1077 0.3876 x 10710 0.3065 x 107°

VI. DiscussioN AND CONCLUSION

The integral equations (9) and (11) for the total charge at
the surfaces of the conducting transmission lines, at the
upper ground plane, and on the dielectric-to-dielectric in-
terfaces are simple in concept. Their solution by the method
of moments using pulse functions for expansion and point
matching for testing is also simple. Experience has shown
that this type of solution is both versatile and accurate.
Improvement in the rate of convergence might be obtained
by using better behaved functions for expansion and test-
ing, but at the cost of considerable complication.

The solution is valid for an arbitrary number of conduc-
tors and an arbitrary number of dielectric layers. It is valid
if a conductor touches a dielectric interface, straddles a
dielectric interface, or is totally within one dielectric re-
gion. Theoretically, the solution is valid if some conductors
are infinitesimally thin and others are of finite cross sec-
tion. However, the computer program of [23] was not
written to include the case where both infinitesimally thin
conductors and finite cross-section conductors are present.

Theoretically, the upper ground plane and the dielectric
interfaces are infinitely wide. However, the numerical solu-
tion is obtained by truncating them at a finite width. From
computational experience, it appears that the numerical
solution will be sufficiently accurate if they are truncated
at a width equal to two or three times the transverse extent
of the conducting transmission lines.

The solution can be easily extended to multilayered
magnetic media by the concept of duality [24, sec. 3-2].
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However, this extension is seldom of practical interest and
is not considered here.

It should be remembered that the basic formulation is
exact only in the limit as the frequency approaches zero. At
high frequencies, the true solution is not a transverse
electromagnetic wave, but is a hybrid one. In other words,
the true solution is not obtained by solving Laplace’s
equation, but rather by solving a coupled wave equation.
This solution is extremely complicated, and experience
indicates that the transverse electromagnetic wave ap-
proximation is sufficiently accurate for most purposes.

APPENDIX

Relationship (22) exists between the inductance matrix
and the free-space capacitance matrix of a multiconductor
transmission line. Since we could not find a general proof
of (22) in the literature, we give one here.

Consider the magnetostatic problem in which a specified
amperage of steady z-directed electric current is forced to
flow on each of the N, conductors of either Fig. 1 or Fig. 2
where the permeability of each dielectric layer is p,. It is
assumed that the electric current flows only in the z
direction. The specified electric current will distribute itself
over the surface of each of the N, conductors, and surface
densities of z-directed electric current will be induced on
the ground plane(s) so that the normal component of
magnetic field is zero on each of the N, conductors and the
ground plane(s). The surfaces of the N, conductors are
called the first N, interfaces. If there is an upper ground
plane, its surface is called the (N, + 1)th interface.

Let S, be the surface bounded by a z-directed line from
z=0 to z=1 on the :th interface, a z-directed line from
z=10to z=1 on the lower ground plane, and connections
in the z =0 and z =1 planes. The magnetic flux ¢, passing
through S, is given by

¢,=ff5£~d§=fc4dz=

In (A1), C, is the contour that bounds §,, B is the magnetic
field, A is the magnetic vector potential, and 4. is the z
component of the magnetic vector potential on the line
where S, meets the ith interface. It has been assumed that
the z component of the magnetic vector potential vanishes
on the lower ground plane. Since the normal component of
magnetic field is zero on the ith interface, ¥, does not
depend on the placement of the line where S, meets the ith
interface. It is now evident from (A1) that

A.(p) =1,

where A4_(p) is the z component of magnetic vector poten-
tial at an arbitrary point p on the ith interface, and ¢, is a
constant flux. Equation (A2) annihilates the normal com-
ponent of magnetic field on the surface of the ith interface.

Using image currents to annihilate the normal compo-
nent of magnetic field on the lower ground plane, we write
A.(p) as

(AD)

(A2)

lo— 9|
e —pl

) dl’ (A3)
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where J, is given by either (3) or (4). Furthermore, J,(p") is
the z component of electric current per unit length on the
J, interfaces, p’ is the point at which the differential
element of length dl’ is located, and ¢ is the image of p’
about the lower ground plane. Substitution of (A3) into
(A2) yields the magnetostatic equation

4 p on/
. D gm0
/~1/ 4 1=1.2,---Jy
(A4)

Consider the electrostatic equations (9) and (11). If all
dielectric layers are replaced by free space, the total charge
density o, reduces to the free charge density or. Conse-
quently, the electrostatic equation (9) becomes

Jif p onl
= \|dl'=V, {~ .
= | EEL
(AS5)

Furthermore, the electrostatic equation (11) disappears.
The solution J_(p") to (A4) 1s of the form

L(¢)= T 10(p)v

=1
where J(p) is the solution that would result if ¢, =1 and
all other ¢/’s were zero. In (A6), the index 7 terminates at N,
because, if there is an upper ground plane, then it has been
assumed that the z component of the magnetic vector
potential vanishes on it so that ., is zero. The solution
ap(p’) to (AS) is of the form

27760

(A6)

N,

L of (),

(=1

"F(B/) = (A7)
where of(p’) is the solution which would result if ¥, =1
and all other V’s were zero. In (A7), the index i terminates
at N, because the upper ground plane, if present, is at zero
potential. It is evident from (A4) and (A5) that

1

2O() = o (). (48)

0

Substitution of (A8) into (A6) gives

1 N«
L(p)=—— L of(p) ¥, (A9)

Pofo , 21

The integral over /, of (A7) is
Q Z 0]l 1’ j=1,2,"'N( (Al())

=1

where Q, is the free charge per unit length on the ;th
conductor and CDJI is the jith element of the free-space

capac1tance matrix.

i=1,2,---N
- (1) / 7 A C
o ///UF (P)d/ ’ <J=1~2""N<. (Al1)
The integral over / ; of (A9) is
1 X
I = > G j=12.---N,  (Al12)

]
Ho€o [ T4
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where I; is the net z-directed electric current on the jth
conductor and G, is given by (A11).
Solving (A12) for the ¢’s in terms of the I’s, we obtain

N,
Vi = o€ Z [CO]i;llj (A13)

j=1

where [CO],.“j1 is the ijith element of the inverse of the
free-space capacitance matrix. This inverse exists because
the free-space capacitance matrix C, is positive definite. In
view of the definition of the inductance matrix L, the
desired relationship (22) between L and C, is evident from
(A13).
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Short Papers

Determination of the Characteristic Impedance by a
Step Current Density Approximation

STEPHAN A. IVANOV AND GEORGI L. DIANKOV

Abstract —The step current densities are used to determine the char-
acteristic impedance of a transmlssmn line with rectangular shape of the
conductors. Numerical results for différent rectangular lines with asymmet-
rical position of the inner conductor are presented. The comparison of the
results for the square and rectangular coaxial lines shows quite good
agreement with the known data.

1. INTRODUCTION

The characteristic impedance of the rectangular coaxial trans-
mission line can be determined with good accuracy for all cases
of interest [1]. When the dxis of the inher and outer conductors
does not coincide and their dimensions differ considerably, the
problem becomes complicated. A general expression for the char-
acteristic impedance is derived in [2], but no numerical data are
given for the line with asymmetrical position of the conductors.
Also, a doubly eccentric rectangular line is considered by Chen
[3] for the case of a sufficiently small gap between conductors.
An analytical expression for the characteristic impedance of the
rectangular line with arbitrary dimensions can be found in [4].
Since the impedance in [4] is calculated by the utilization of the
mean value current densities, which may differ considerably from
the true current distribution ont the inner conductor surface, an
error of several percent exists. The purpose of the present short
paper is to improve the accuracy of the characteristic impedance
calculation by using the step cuirrent density approximation. In
this way, the edge discontinuity of the current distribution is
taken into consideration and an error less than one percent for
the impedance values can be obtained.

II. THEORETICAL RESULTS

The investigated rectangular transmission line is shown in Fig.
1. Since the cross section of this line coincides with the single cell
of the four-conductor line considered in [4], the characteristic
impedance can be determined by the expression (4) in [4]—the
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case of the odd—odd mode of excitation. Here it is proposed that
the current distribution J; (1) be replaced by a set of step current
densities J;,. For the case when the /,-wall is divided into N,
intervals with a length /, /N,, the final result for the characteris-
tic impedance of the ifivestigated line can be expressed by the
formula

Oy e
€, 120 i,j=1gq,r=1 Iq jrm=1 m3(1_eﬁ2m73)
wr =? Mo 2
h (J1q+J2q) + Z (J3q+J4q)
q=1 L2 g=1
where
Bl =sinmaD B,,, =sinma(D+T)

BSrm B4rm = Cos m’”(D + T -1
N3 4

The coefficients Z,;,,,, = Z;,,,,, are determined as follows:
7 — Wi +1/N;
leqrm - Zqurm ZZqum em a1/ ML)

. [1 + g~ 2mm(B— W(q*r+1/N1,2))]
+ efmﬂW(‘I*r—l/Nl,z) [1 + e—2m'/r(B— W(q_’“l/Nl'z))]
_2e—m77W(q—’/N1,z)[1+ e~2m7r(B—W(qAr/N1,z))]
-(1- e_mW(W/NLZ))Z[ o~ MRS+ W(g+r=2/N; )

. + p—mT(B-25- W(q+r/N1.z))]

(1_ e—(mWW/Nl,z))(l— e

. [ e MW=/ N o) 4 pmm7(2B-28~ W(q/N1,z))]

72m7TS)

Zl3qrm = Z23qrm =

Zy3gom = (1— € 2" )[1 — g=2mm(B-S~ W)']
Ziagrm = Zz4qrm =(1—e (mW/M.2)

[1— emmm@STWRe-1/Map ]
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